3 research outputs found

    Bio-Inspired, Odor-Based Navigation

    Get PDF
    The ability of moths to locate a member of the opposite sex, by tracking a wind-borne plume of odor molecules, is an amazing reality. Numerous scenarios exist where having this capability embedded into ground-based or aerial vehicles would be invaluable. The main crux of this thesis investigation is the development of a navigation algorithm which gives a UAV the ability to track a chemical plume to its source. Inspiration from the male moth\u27s, in particular Manduca sexta, ability to successfully track a female\u27s pheromone plume was used in the design of both 2-D and 3-D navigation algorithms. The algorithms were developed to guide autonomous vehicles to the source of a chemical plume. The algorithms were implemented using a variety of fuzzy controllers and ad hoc engineering approaches. The fuzzy controller was developed to estimate the location of a vehicle relative to the plume: coming into the plume, in the plume, exiting the plume, or out of the plume. The 2-D algorithm had a 60% to 90% success rate in reaching the source while certain versions of 3-D algorithm had success rates from 50% to 100%

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore